Based on Chapter 8 of ModernDive. Code for Quiz 12.
Load the R package we will use.
Replace all the instances of ???. These are answers on your moodle quiz.
Run all the individual code chunks to make sure the answers in this file correspond with your quiz answers
After you check all your code chunks run then you can knit it. It won’t knit until the ??? are replaced
Save a plot to be your preview plot
Look at the variable definitions in congress_age
Set random seed generator to 123
Take a sample of 100 from the dataset congress_age
and assign it to congress_age_100
set.seed(123)
congress_age_100<-congress_age %>%
rep_sample_n(size=100)
congress_age is the population and congress_age_100 is the sample
??? is number of observations in the the population and ??? is the number of observations in your sample
congress_age_100 %>%
specify(response = age)
Response: age (numeric)
# A tibble: 100 x 1
age
<dbl>
1 53.1
2 54.9
3 65.3
4 60.1
5 43.8
6 57.9
7 55.3
8 46
9 42.1
10 37
# … with 90 more rows
Response: age (numeric)
# A tibble: 100,000 x 2
# Groups: replicate [1,000]
replicate age
<int> <dbl>
1 1 42.1
2 1 71.2
3 1 45.6
4 1 39.6
5 1 56.8
6 1 71.6
7 1 60.5
8 1 56.4
9 1 43.3
10 1 53.1
# … with 99,990 more rows
The output has ??? rows
Assign to bootstrap_distribution_mean_age
Display bootstrap_distribution_mean_age
visualize(bootstrap_distribution_mean_age)
Assign the output to congress_ci_percentile
Display congress_ci_percentile
congress_ci_percentile <- bootstrap_distribution_mean_age %>%
get_confidence_interval(type = "percentile", level = 0.95)
congress_ci_percentile
# A tibble: 1 x 2
lower_ci upper_ci
<dbl> <dbl>
1 51.5 55.2
obs_mean_age
,Shade the confidence interval
Add a line at the observed mean, obs_mean_age
, to your visualization and color it “hotpink”
visualize(bootstrap_distribution_mean_age) +
shade_confidence_interval(endpoints = congress_ci_percentile) +
geom_vline(xintercept = obs_mean_age, color = "hotpink", size=1)
Calculate the population mean to see if it is in the 95% confidence interval
Assign the output to pop_mean_age
Display pop_mean_age
pop_mean_age <- congress_age %>%
summarize(pop_mean= mean(age)) %>% pull()
pop_mean_age
, to the plot color it “purple”visualize(bootstrap_distribution_mean_age) +
shade_confidence_interval(endpoints = congress_ci_percentile) +
geom_vline(xintercept = obs_mean_age, color = "hotpink", size = 1) +
geom_vline(xintercept = pop_mean_age, color = "purple", size = 3)
Is population mean the 95% confidence interval constructed using the bootstrap distribution? YES
Change set.seed(123) to set.seed(4346). Rerun all the code.
When you change the seed is the population mean in the 95% confidence interval constructed using the bootstrap distribution? NO
If you construct 100 95% confidence intervals approximately how many do you expect will contain the population mean? YES