Code for quiz 6, more dplyr and our fisrt interactive chart using echarts4r.
drug_cos.csv
,health_cos.csv
into R and assign to the variable drug_cos
and health_cos
, respectively.drug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
glimpse
to get a glimpse of the data.drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000,…
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000,…
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 364…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 339…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000,…
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000,…
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, …
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dr…
names_drugs <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drugs,names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order): ticker
, year
,grossmargin
-Extract observations for 2018 -Assign output to drug_subset
For health_cos
select (in this order): ticker
,year
,revenue
,gp
,industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with columns health_subset
drug_subset%>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - …
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - …
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - …
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - …
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - …
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - …
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - …
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - …
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - …
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - …
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - …
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - …
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - …
drug_cos
drug_cos
drug_cos_subset
drug_cos_subset <- drug_cos %>%
filter(ticker=="JNJ")
drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John… New Jer… 0.247 0.687 0.149 0.199 0.161
2 JNJ John… New Jer… 0.272 0.678 0.161 0.218 0.173
3 JNJ John… New Jer… 0.281 0.687 0.194 0.224 0.197
4 JNJ John… New Jer… 0.336 0.694 0.22 0.284 0.217
5 JNJ John… New Jer… 0.335 0.693 0.22 0.282 0.219
6 JNJ John… New Jer… 0.338 0.697 0.23 0.286 0.229
7 JNJ John… New Jer… 0.317 0.667 0.017 0.243 0.019
8 JNJ John… New Jer… 0.318 0.668 0.188 0.233 0.244
# … with 1 more variable: year <dbl>
drug_cos_subset
with the columns of health_cos
combo_df <- drug_cos_subset %>%
left_join(health_cos)
combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John… New Jer… 0.247 0.687 0.149 0.199 0.161
2 JNJ John… New Jer… 0.272 0.678 0.161 0.218 0.173
3 JNJ John… New Jer… 0.281 0.687 0.194 0.224 0.197
4 JNJ John… New Jer… 0.336 0.694 0.22 0.284 0.217
5 JNJ John… New Jer… 0.335 0.693 0.22 0.282 0.219
6 JNJ John… New Jer… 0.338 0.697 0.23 0.286 0.229
7 JNJ John… New Jer… 0.317 0.667 0.017 0.243 0.019
8 JNJ John… New Jer… 0.318 0.668 0.188 0.233 0.244
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
Note the variables ticker
.name
,location
and industry
are the same for all observations.
Assign the company name to co_name
co_name <- combo_df %>%
distinct(name) %>%
pull()
co_location
co_location <- combo_df %>%
distinct(location) %>%
pull()
co_industry
co_industry <- combo_df %>%
distinct(industry) %>%
pull()
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text. The company Answer is located in Answer and is a member of the Answer industry group.
The company Johnson & Johnson is located in New Jersey; U.S.A and is a member of Drug Manufacturers - General industry group.
combo_df
year
, grossmargin
, netmargin
, revenue
, gp
, net income
Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin, revenue, gp, netincome)
combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
grossmargin_check
to compare with the variable grossmargin
. They should be equal. grossmargin_check
= gp
/ revenue
Create the variable close_enough
to check that the absolute value of the difference between grossmargin_check
and grossmargin
is less than 0.001combo_df_subset %>%
mutate(grossmargin_check=gp/revenue, close_enough=abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 6.50e10 4.47e10 9.67e 9
2 2012 0.678 0.161 6.72e10 4.56e10 1.09e10
3 2013 0.687 0.194 7.13e10 4.90e10 1.38e10
4 2014 0.694 0.22 7.43e10 5.16e10 1.63e10
5 2015 0.693 0.22 7.01e10 4.85e10 1.54e10
6 2016 0.697 0.23 7.19e10 5.01e10 1.65e10
7 2017 0.667 0.017 7.64e10 5.10e10 1.30e 9
8 2018 0.668 0.188 8.16e10 5.45e10 1.53e10
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
netmargin_check
to compare with the variable netmargin
. They should be equal. -Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001 combo_df_subset %>%
mutate(netmargin_check = netincome/revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 6.50e10 4.47e10 9.67e 9
2 2012 0.678 0.161 6.72e10 4.56e10 1.09e10
3 2013 0.687 0.194 7.13e10 4.90e10 1.38e10
4 2014 0.694 0.22 7.43e10 5.16e10 1.63e10
5 2015 0.693 0.22 7.01e10 4.85e10 1.54e10
6 2016 0.697 0.23 7.19e10 5.01e10 1.65e10
7 2017 0.667 0.017 7.64e10 5.10e10 1.30e 9
8 2018 0.668 0.188 8.16e10 5.45e10 1.53e10
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>
health_cos
datahealth_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent =mean( netincome /revenue ) * 100,
median_netmargin_percent = median( netincome / revenue) * 100,
min_netmargin_percent = min( netincome / revenue) * 100,
max_netmargin_percent = max( netincome / revenue) * 100) %>%
knitr::kable()
industry | mean_netmargin_percent | median_netmargin_percent | min_netmargin_percent | max_netmargin_percent |
---|---|---|---|---|
Biotechnology | -4.657436 | 7.621995 | -197.4908687 | 68.804898 |
Diagnostics & Research | 13.139154 | 12.332078 | 0.3990080 | 26.344477 |
Drug Manufacturers - General | 19.358281 | 19.537586 | -34.8658185 | 100.853774 |
Drug Manufacturers - Specialty & Generic | 5.879275 | 9.008114 | -75.9913646 | 24.515021 |
Healthcare Plans | 3.283594 | 3.374305 | -0.3052745 | 6.020507 |
Medical Care Facilities | 6.101918 | 6.458909 | 1.3975983 | 8.304696 |
Medical Devices | 12.363459 | 14.284582 | -56.1180853 | 49.362818 |
Medical Distribution | 1.700144 | 1.033174 | -0.1016205 | 4.513858 |
Medical Instruments & Supplies | 12.313479 | 13.978242 | -47.0569354 | 48.853685 |
-mean_netmargin_percent for the industry Medical Care Facilities is -median_netmargin_percent for the industry Medical Care Facilities is -min_netmargin_percent for the industry Medical Care Facilities is -max_netmargin_percent for the industry Medical Care Facilities is
health_cos
datahealth_cos
and assign to the variable health_cos_subset
health_cos_subset <- health_cos %>%
filter(ticker == "ZTS")
health_cos_subset
health_cos_subsethealth_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet… 4.23e9 2.58e9 4.27e8 2.45e8 5.71e 9 1975000000
2 ZTS Zoet… 4.34e9 2.77e9 4.09e8 4.36e8 6.26e 9 2221000000
3 ZTS Zoet… 4.56e9 2.89e9 3.99e8 5.04e8 6.56e 9 5596000000
4 ZTS Zoet… 4.78e9 3.07e9 3.96e8 5.83e8 6.59e 9 5251000000
5 ZTS Zoet… 4.76e9 3.03e9 3.64e8 3.39e8 7.91e 9 6822000000
6 ZTS Zoet… 4.89e9 3.22e9 3.76e8 8.21e8 7.65e 9 6150000000
7 ZTS Zoet… 5.31e9 3.53e9 3.82e8 8.64e8 8.59e 9 6800000000
8 ZTS Zoet… 5.82e9 3.91e9 4.32e8 1.43e9 1.08e10 8592000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct
. Go to the help pane to see what distinct
does
In the console, type ?pull
. Go to the help pane to see what pull
does
Run the code below
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Zoetis Inc"
co_name
co_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
You can take output from your code and include it in your text.
co_industry
co_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
This is outside the Rchunck. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group.
df
glimpse
to glimpse the data for the plotsdf %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Dru…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879,…
ggplot
to initialize the chartdf
industry
is mapped to the x-axis
med_rnd_rev
med_rnd_rev
is mapped in the y-axisgeom_col
scale_y_continuous
to label the y-axis with percentcoord_flip()
to flip the coordinateslabs
to add title, subtitle and remove x and y-axestheme_ipsum()
from the hrbrthemes package to imporve the themeggplot(data = df, mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
))+
geom_col()+
scale_y_continuous(labels= scales::percent)+
coord_flip()+
labs(
title= "Median R&D expenditures",
subtitle= "by industry as a percent of revenue from 2011 to 2018",
x=NULL,y=NULL)+
theme_ipsum()
ggsave(filename="preview.png",
path = here::here("_posts","2021-03-13-joining-data"))
df
arrange
to reorder med_rnd_rev
e_charts
to initialize a chart
industry
is mapped to the x-axise_bar
with the values of med_rnd_rev
e_flip_coords()
to flip the coordinatese_title
to add the title and the subtitlee_legend
to remove the legendse_x_axis
to change format of labels on x-axis to percente_y_axis
to remove labels on y-axise_theme
to change the them. Find more themes heredf %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry,
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text="Median industry R&D expenditures",
subtext ="by industry as a percent of revenue from 2011 to 2018",
left ="center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent",digits=0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("inforgraphic")